
Lecture 10

Universal Compression with LZ77 + Practical tips on lossless compression

EE 274: Data Compression - Lecture 10

Recap

Entropy rate - fundamental limit of lossless compression

Special cases: entropy (iid), conditional entropy (Markov)

H(U) = ​H(U ​∣U ​,U ​, … ,U ​) =
n→∞
lim n+1 1 2 n ​ ​

n→∞
lim

n

H(U ​,U ​, … ,U ​)1 2 n

Context-based arithmetic coding

Prediction implies compression

th order adaptive arithmetic coding (and more advanced models)

Extreme text compression with LLMs

k

EE 274: Data Compression - Lecture 10

Quiz - Q2 First order adaptive arithmetic coding

Consider first order adaptive arithmetic coding with . The initial counts

are set to 1, i.e., . You are encoding

, and assume that for encoding the first symbol you take

 (padding).

1. What is ?

2. What is ?

3. Assuming arithmetic coding uses exactly , what is the

encoded size for the sequence ?

X = {A,B,C}
c(A,A) = c(A,B) = ⋯ = c(C,C) = 1

X ​X ​X ​ =1 2 3 BAB X ​ =1 B

X ​ =0 A

(X ​ =P̂ 2 A∣X ​X ​ =0 1 AB)

(X ​ =P̂ 3 B∣X ​X ​X ​ =0 1 2 ABA)

​ log ​ ​∑i 2 (X ​∣X ​,…,X ​)P̂ i 0 i−1

1

X ​X ​X ​ =1 2 3 BAB

EE 274: Data Compression - Lecture 10

before

after

1.

2.

3.

i = 1 i = 2 i = 3

X ​i−1 A B A

X ​i B A B

c(A,B) = 1 c(B,A) = 1 c(A,B) = 2

​ c(x,X ​)∑x∈{A,B,C} i 3 3 4

(X ​∣past)P̂ i ​3
1

​3
1

​4
2

c(A,B) = 2 c(B,A) = 2 c(A,B) = 3

​3
1

​4
2

log ​(​) +2 3
1 log ​(​) +2 3

1 log ​(​) ≈2 2
1 4.17

EE 274: Data Compression - Lecture 10

Quiz

Q1

Which lossless compressor is most suitable under following situations:

1. You know that the data is roughly 2nd order Markov but do not know the transition
probabilities.

◯ context-based arithmetic coding
◯ context-based adaptive arithmetic coding

EE 274: Data Compression - Lecture 10

Quiz

Q1

Which lossless compressor is most suitable under following situations:

2. You know that the data is 3rd order Markov and know the exact distribution.

◯ context-based arithmetic coding

◯ context-based adaptive arithmetic coding

EE 274: Data Compression - Lecture 10

Quiz

Q1

We didn't ask this in the quiz, but now is a good time

Which lossless compressor is most suitable under following situations:

3. You know nothing about the input data.

◯ LZ77

◯ context-based arithmetic coding
◯ context-based adaptive arithmetic coding

EE 274: Data Compression - Lecture 10

Universal Compression with Lempel-Ziv compression

EE 274: Data Compression - Lecture 10

Study universal compressors - a scheme that does well on any stationary input without
prior knowledge of the source distribution.

As part of this - explore one of the most common schemes used in practical compressors!

EE 274: Data Compression - Lecture 10

Universal compressor

Consider a compressor that works on arbitrary length inputs and has length function

.

Definition: Universal Compressor

 is universal if

​ ​E[l(X)] =
n→∞
lim

n

1 n H(X)

for any stationary ergodic source.

So a single compressor is asymptotically optimal for every stationary distribution

without prior knowledge of the source distribution!

C

l(x)n

C

C

EE 274: Data Compression - Lecture 10

Thinking in terms of universal predictors

Recall from last lecture that a compressor induces a distribution via it's length
function: .

A universal compressor's approximates any stationary distribution arbitrarily closely

as grows!

In particular a universal compressor is a universal predictor!

​(x) =p̂ n 2−l(x)n

​p̂

n

EE 274: Data Compression - Lecture 10

Thinking in terms of universal predictors

Recall from last lecture that a compressor induces a distribution via it's length
function: .

A universal compressor's approximates any stationary distribution arbitrarily closely
as grows!

In particular a universal compressor is a universal predictor!

All this needs to be rigorously formulated, e.g., see the reference below, talk to Tsachy, and

take EE 376C!

Ref: M. Feder, N. Merhav and M. Gutman, "Universal prediction of individual sequences," in

IEEE Transactions on Information Theory, vol. 38, no. 4, pp. 1258-1270, July 1992, doi:
10.1109/18.144706.

​(x) =p̂ n l(x)n

​p̂

n

EE 274: Data Compression - Lecture 10

Lempel-Ziv universal algorithms

LZ77: in gzip, zstd, png, zip, lz4, snappy

LZ78: strong theoretical guarantees

LZW (Lempel-Ziv-Welch) (LZ78 variant): in linux compress utility, GIF

LZMA (Lempel–Ziv–Markov chain algorithm) (LZ77 variant): 7-Zip, xz

References:

1. LZ77: Ziv, Jacob, and Abraham Lempel. "A universal algorithm for sequential data

compression." IEEE Transactions on information theory 23.3 (1977): 337-343.

2. LZ78: Ziv, Jacob, and Abraham Lempel. "Compression of individual sequences via
variable-rate coding." IEEE transactions on Information Theory 24.5 (1978): 530-536.

3. LZW: Welch, Terry A. "A technique for high-performance data compression."
Computer 17.06 (1984): 8-19.

EE 274: Data Compression - Lecture 10

LZ77 algorithm

Simple idea: Replace repeated segments in data with pointers and lengths!

EE 274: Data Compression - Lecture 10

LZ77 parsing example

ABBABBABBCAB

Unmatched literals Match length Match offset

- - -

- - -

- - -

EE 274: Data Compression - Lecture 10

LZ77 parsing example

A[B]BABBABBCAB

Unmatched literals Match length Match offset

AB 1 1

- - -

- - -

EE 274: Data Compression - Lecture 10

LZ77 parsing example

[ABBABB]ABBCAB

Unmatched literals Match length Match offset

AB 1 1

- 6 3

- - -

EE 274: Data Compression - Lecture 10

LZ77 parsing example

ABBABB[AB]BCAB

Unmatched literals Match length Match offset

AB 1 1

- 6 3

C 2 4

EE 274: Data Compression - Lecture 10

LZ77 unparsing example

Unmatched literals Match length Match offset

AB 1 1

- 6 3

C 2 4

Decoded:

EE 274: Data Compression - Lecture 10

LZ77 unparsing example

Unmatched literals Match length Match offset

AB 1 1

- 6 3

C 2 4

Decoded: ABB

EE 274: Data Compression - Lecture 10

LZ77 unparsing example

Unmatched literals Match length Match offset

AB 1 1

- 6 3

C 2 4

Decoded: ABBABBABB

EE 274: Data Compression - Lecture 10

LZ77 unparsing example

Unmatched literals Match length Match offset

AB 1 1

- 6 3

C 2 4

Decoded: ABBABBABBCAB

EE 274: Data Compression - Lecture 10

LZ77 parsing

Pseudocode:

For input sequence x[0], x[1], ...

Suppose we have parsed till x[i-1].

- Try to find largest k such that for some j < i
 x[j:j+k] = x[i:i+k]

- Then the match length is k and the match offset is i-j

 [note that the ranges j:j+k and i:i+k are allowed to overlap]

- If no match found, store as literal.

EE 274: Data Compression - Lecture 10

LZ77 unparsing

Pseudocode:

At each step:

- First read any literals and copy to output y.

- To decode a match with length l and offset o.
 - If l < o:
 - append y[-o:-o+l] to y
 - Else:
 // Need to be more careful with overlapping matches!
 - For _ in 0:l:
 - append y[-o] to y

Decompression is very fast since it just involves copying!

EE 274: Data Compression - Lecture 10

Quiz question

Apply the above parsing and unparsing algorithms for the following:

1. Parse AABBBBBBBAABBBCDCDCD.

2. Unparse the below table (note that this parsing was generated using a different parser

than the one described above!):

Unmatched literals Match length Match offset

AABBB 4 1

- 5 9

CDCD 2 2

EE 274: Data Compression - Lecture 10

Encoding step

 ┌─────────────┐ ┌──────────────┐ ┌───────────┐ ┌──────────┐
┌──────────┐ │ │ │ Literals │ │ Entropy │ │Compressed│
│Input data├───────►│LZ77 parsing ├─────►│ ├─────►│ coding ├────►│ │
└──────────┘ │ │ │ Matches │ │ │ │ File │
 └─────────────┘ └──────────────┘ └───────────┘ └──────────┘

Need to encode the literals, match lengths and match offsets.

Implementations (gzip, zstd, etc.) differ in the approach.

Typically use Huffman coding/ANS with some modifications to optimize for real-life

data.

More on this in a bit!

EE 274: Data Compression - Lecture 10

LZ77 universality proof idea

Question:

Consider iid sequence

If symbol has probability , what's the expected gap between consecutive

occurences of ?

… ,X ​,X ​,X ​,X ​,X ​, …−2 −1 0 1 2

a P (a)
a

EE 274: Data Compression - Lecture 10

LZ77 universality proof idea

Question:

Consider iid sequence

If symbol has probability , what's the expected gap between consecutive

occurences of ?

Hint: In a block of size , how many times do you expect to see ? What's the average

spacing between the occurences?

… ,X ​,X ​,X ​,X ​,X ​, …−2 −1 0 1 2

a P (a)
a

n a

EE 274: Data Compression - Lecture 10

LZ77 universality proof idea

Question:

Consider iid sequence

If symbol has probability , what's the expected gap between consecutive

occurences of ?

Hint: In a block of size , how many times do you expect to see ? What's the average

spacing between the occurences?

Answer: (using law of large numbers and the iid-ness)

You expect to see around times, and the average spacing is .

… ,X ​,X ​,X ​,X ​,X ​, …−2 −1 0 1 2

a P (a)
a

n a

a nP (a) ​ =
nP (a)
n

​

P (a)
1

EE 274: Data Compression - Lecture 10

LZ77 universality proof idea

This generalizes to stationary ergodic processes.

Kac's Lemma
Let be a stationary ergodic process and let

 be the recurrence time (last time occurred

before index). Given that , we have

E[R ​(X ​, … ,X ​)] =n 0 n−1 ​

p(x ​)0
n−1
1

In simple words, if , the same sequence also occured

roughly positions ago. Thus the match offset in LZ77 is .

… ,X ​,X ​,X ​,X ​,X ​, …−2 −1 0 1 2

R ​(X ​, … ,X ​)n 0 n−1 X ​, … ,X ​0 n−1

0 (X ​, … ,X ​) =0 n−1 x ​0
n−1

(X ​, … ,X ​) =0 n−1 x ​0
n−1 x ​0

n−1

​

p(x)0
n−1
1

​

p(x ​)0
n−1
1

EE 274: Data Compression - Lecture 10

LZ77 universality proof idea

Can encode the match offset using close to bits using an

appropriate integer coder (e.g., check out the Elias Delta code in SCL).

​

p(x ​)0
n−1
1 log ​ ​2 p(x ​)0

n−1
1

EE 274: Data Compression - Lecture 10

https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compressors/elias_delta_uint_coder.py

LZ77 universality proof idea

Can encode the match offset using close to bits using an

appropriate integer coder (e.g., check out the Elias Delta code in SCL).

Match length and literal contribution is negligible!

​

p(x ​)0
n−1
1 log ​ ​2 p(x ​)0

n−1
1

EE 274: Data Compression - Lecture 10

https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compressors/elias_delta_uint_coder.py

LZ77 universality proof idea

Can encode the match offset using close to bits using an

appropriate integer coder (e.g., check out the Elias Delta code in SCL).

Match length and literal contribution is negligible!

Expending bits means we are following the thumb rule, and we use on

average

​

p(x ​)0
n−1
1 log ​ ​2 p(x ​)0

n−1
1

log ​2 p(x ​)0
n−1
1

E[l(X)] ≈n E[log ​ ​] =2 p(x ​)0
n−1
1 H(X)n

EE 274: Data Compression - Lecture 10

https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compressors/elias_delta_uint_coder.py

LZ77 universality proof idea

Can encode the match offset using close to bits using an

appropriate integer coder (e.g., check out the Elias Delta code in SCL).

Match length and literal contribution is negligible!

Expending bits means we are following the thumb rule, and we use on

average

Taking this to the limit, we can see that LZ77 achieves the entropy rate!

​

p(x ​)0
n−1
1 log ​ ​2 p(x ​)0

n−1
1

log ​2 p(x ​)0
n−1
1

E[l(X)] ≈n E[log ​ ​] =2 p(x ​)0
n−1
1 H(X)n

EE 274: Data Compression - Lecture 10

https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compressors/elias_delta_uint_coder.py

LZ77 universality proof idea

For a more detailed and rigorous proof, check out Cover and Thomas chapter 13 or

A. D. Wyner and J. Ziv, "The sliding-window Lempel-Ziv algorithm is asymptotically
optimal," in Proceedings of the IEEE, vol. 82, no. 6, pp. 872-877, June 1994, doi:

10.1109/5.286191.

EE 274: Data Compression - Lecture 10

LZ77 universality proof idea

Asymptotic theory doesn't fully explain the excellent performance in practice:

for a th order Markov process, you expect LZ77 to do well in the limit, but not

amazing for reasonable sized data

the idea of finding matches is just very well-matched to real-life data and the data is
not always modeled easily as a th order Markov process.

k

k

EE 274: Data Compression - Lecture 10

LZ77 parsing on real data - examples

Let's look at how matches look in practice and how the match lengths and offsets are
typically distributed.

We use the LZ77 implementation in SCL for this purpose.

EE 274: Data Compression - Lecture 10

LZ77 parsing on real data - examples

Long matches:

EE 274: Data Compression - Lecture 10

LZ77 parsing on real data - examples

Long matches:

EE 274: Data Compression - Lecture 10

LZ77 parsing on real data - examples

Far off matches (150 KB apart) [pleasure]:

First page:

So she was considering in her own mind (as well as she could,
for the hot day made her feel very sleepy and stupid), whether
the pleasure of making a daisy-chain would be worth the trouble
of getting up and picking the daisies, when suddenly a White
Rabbit with pink eyes ran close by her.

Last page:

, and make THEIR eyes bright and eager
with many a strange tale, perhaps even with the dream of
Wonderland of long ago: and how she would feel with all their
simple sorrows, and find a pleasure in all their simple joys,
remembering her own child-life, and the happy summer days.

 THE END
EE 274: Data Compression - Lecture 10

LZ77 parsing on real data - examples

EE 274: Data Compression - Lecture 10

LZ77 parsing on real data - examples

EE 274: Data Compression - Lecture 10

Practical considerations - sliding window

Do I need to keep infinite past memory?

Use sliding window - only find matches in past 10s of KBs (gzip) to multiple MBs
(zstd) window.

Typically use circular buffer to efficiently handle windows without reallocation.

Bigger window gives better compression but needs more memory for both
compression and decompression.

See LZ77Window and LZ77SlidingWindowEncoder / LZ77SlidingWindowDecoder

in SCL to understand this better.

EE 274: Data Compression - Lecture 10

Practical considerations - sliding window

EE 274: Data Compression - Lecture 10

Practical considerations: match finding

How to find matches?

Many ways to do this without affecting decoder code or performance

Basic idea:
index past occurences of sequences (e.g., 4-length substrings) in a data

structure like hash table/binary tree

for the given position, do a lookup to find previous occurences and then extend
the candidate match to find longest match

EE 274: Data Compression - Lecture 10

Practical considerations: match finding

How to find matches?

Many ways to do this without affecting decoder code or performance

Basic idea:
index past occurences of sequences (e.g., 4-length substrings) in a data

structure like hash table/binary tree

for the given position, do a lookup to find previous occurences and then extend
the candidate match to find longest match

Greedy not always the best
can incur a literal to find a longer match at the next position (e.g., lazy strategies

don't immediately take a match, instead look ahead to find if there's a longer one)

strategies range from fast and greedy to slow and optimal (e.g., using dynamic
programming to find the "optimum" parsing)

EE 274: Data Compression - Lecture 10

SCL: LZ77SlidingWindowEncoder

class LZ77SlidingWindowEncoder:
 - match_finder: Match finder used for encoding (not required for decoding)
 - window_size: size of sliding window (maximum lookback)

class MatchFinderBase:
 def extend_match(
 self, match_start_in_lookahead_buffer, match_pos, lookahead_buffer, left_extension=True)

 def find_best_match(self, lookahead_buffer)

class HashBasedMatchFinder(MatchFinderBase):
 - hash_length (int): The length of byte sequences to hash.
 - hash_table_size (int): Size of the hash table.
 - max_chain_length (int): Maximum length of the chains in the hash table.
 - lazy (bool): Whether to use lazy matching where LZ77 considers one step ahead and skips a literal if it finds a longer match.
 - minimum_match_length (int): Minimum length of a match to be considered.

EE 274: Data Compression - Lecture 10

Practical considerations: match finding

EE 274: Data Compression - Lecture 10

Practical considerations: match finding

EE 274: Data Compression - Lecture 10

Entropy coding

Unmatched literals Match length Match offset

AABBB 4 1

- 5 9

CDCD 2 2

encoded as

EE 274: Data Compression - Lecture 10

Entropy coding

literals = AABBBCDCD

and

Literal counts Match length Match offset

5 4 1

0 5 9

4 2 2

EE 274: Data Compression - Lecture 10

Entropy coding

Each of streams encoded using various entropy coding approaches.

Huffman - dynamic/static
gzip exclusively relies on this

zstd - Huffman only for literals

tANS: zstd uses tANS for literals and match lengths

Context-based arithmetic coding (slower to encode and decode): LZMA

For very high speeds, skip entropy coding and use fixed length codes! (LZ4, Snappy)

EE 274: Data Compression - Lecture 10

Entropy coding of integers

Match lengths/offsets have a large range (can be up to millions).

Naively applying Huffman codes on such a large alphabet inefficient due to lack of

counts (e.g., a specific match offset like 14546 might not occur many times).

Typical approach: divide the integers into bins: entropy code bin index and encode the

position in bin using plain old fixed length code.

E.g., bins 2-3, 4-7, 8-15 and if in bin 8-15 use 3 bits to encode within bin position.

Can imagine this as a Huffman tree where you first have the bins as leaves and then

attach a complete binary tree to each of these.

Check out LogScaleBinnedIntegerEncoder in SCL LZ77 implementation.

EE 274: Data Compression - Lecture 10

Practical considerations

Parsing/match finding strategy, window size, entropy coding, implementation details

(SIMD and more) matters a lot in determining speed and memory usage.

EE 274: Data Compression - Lecture 10

LZ77 implementation benchmark (https://facebook.github.io/zstd/)

EE 274: Data Compression - Lecture 10

https://facebook.github.io/zstd/

Universal doesn't mean perfect

LZ77 is universal in an asymptotic sense, but need not be the best choice for a given

dataset.

There are things to consider beyond the compression rate - speed, memory usage
and so on.

Choices (discussed above) made in LZ77 implementations play a big role in its
performance.

EE 274: Data Compression - Lecture 10

That's it on LZ!

We didn't talk about LZ78 and LZW - similar core ideas but slightly different tree-
based parsing method

For LZ78, possible to prove very powerful universality results, including non-
asymptotic ones!

In particular can show that LZ78 gets compression rate within

 of the optimal th order model for any sequence.

Learn more in EE 376C.

Much more on LZ77 we didn't cover (e.g., repcodes, optimal parsing)

Great project ideas!

O(​ +log n
k

​)log n
log log n k

EE 274: Data Compression - Lecture 10

Practical tips on lossless compression

EE 274: Data Compression - Lecture 10

Is it possible you don't need all this data?

Identify parts of data that are costing the most:

Can you get rid of it or change the representation?

Does the identifier need to be so random?

Do you need to store the data for so long?

Sometimes legal requirements

What is your data access pattern?
Backup/archive (cold storage) cheaper than hot storage

Also: lossy compression - starting next lecture!

EE 274: Data Compression - Lecture 10

Compression is not only about storage

memory reduction

bandwidth reduction

faster querying

EE 274: Data Compression - Lecture 10

You definitely need to store this data losslessly! Now what?

EE 274: Data Compression - Lecture 10

Things not to do

Use your recently acquired EE274 knowledge and straightaway start spending a
bunch of time developing your own compressor

Implement LZ77 and all the entropy coders on your own

Search online and purchase the license to a fancy looking compression solution

Decide to use gzip with default settings since that's the popular thing

All of these can make sense, but not as the first step!

EE 274: Data Compression - Lecture 10

Understand your application

Resource requirements - compression/decompression speed/memory

Where will compression and decompression happen?

Closed system owned by you? Deployed by customers? Open source library?

How will compression and decompression happen?

CLI? Library in some programming language?

Is the data homogenous? Is there a lot of the same kind of data?

All these would affect your choice of compressor (or your decision to build your own), as

well as how to deploy it.

EE 274: Data Compression - Lecture 10

Using compression benchmarks

http://quixdb.github.io/squash-benchmark/unstable/

Measure compression ratio as well as compression and decompression speed on your
specific dataset or on a general corpus

Find the most prefered operating point

EE 274: Data Compression - Lecture 10

http://quixdb.github.io/squash-benchmark/unstable/

EE 274: Data Compression - Lecture 10

EE 274: Data Compression - Lecture 10

General rule of thumb

zstd has very fast decompression, and a variety of compression levels - should be the

first thing to try. Don't use gzip unless you have a very good reason.

To go even faster, try LZ4.

EE 274: Data Compression - Lecture 10

General rule of thumb

zstd has very fast decompression, and a variety of compression levels - should be the
first thing to try. Don't use gzip unless you have a very good reason.

To go even faster, try LZ4.

For slower but better compression, try out:
LZMA based compressors (7-zip, xz)

BWT based compressors (bzip2, bsc) - faster compression (than LZMA), slower

decompression [more on BWT in HW 3!]

For even more resource intensive - try context based arithmetic coding with th order,

PPMd, etc. (these don't always beat LZ/BWT)

CMIX/NNCP/LLM - if you want to understand the limits!

k

EE 274: Data Compression - Lecture 10

Using zstd and using it well

Use the latest version

Choose the right level (1-19, also negative and ultra levels)

sometimes makes sense to use custom advanced parameters (e.g., window size,
hash length)

Use CLI/library in language of your choice - zstd also supports multithreaded

compression

Reuse zstd context objects if processing multiple files

For small files, consider using dictionary compression (HW3 problem!)

EE 274: Data Compression - Lecture 10

When does a domain specific compressor make sense?

noticeable gap between existing compressors and estimated entropy (theory super
useful here!)

do well while being faster than existing (using the structure of the data)

easier if closed ecosystem

lots of data of the same type making investment worth it
design

implement

test

format and versioning

monitoring and maintenance

portability and language support
EE 274: Data Compression - Lecture 10

That's all on lossless compression!

Thank you :)

EE 274: Data Compression - Lecture 10

